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Summary

Although bacteria from the genus Collimonas have
demonstrated in vitro antifungal activity against many
different fungi, they appeared inactive against the
plant-pathogenic fungus Fusarium oxysporum f.sp.
radicis-lycopersici (Forl), the causal agent of tomato
foot and root rot (TFRR). Visualization studies using
fluorescently labelled organisms showed that bacte-
rial cells attached extensively to the fungal hyphae
under nutrient-poor conditions but not in glucose-
rich Armstrong medium. Collimonas fungivorans was
shown to be as efficient in colonizing tomato root tips
as the excellent colonizer Pseudomonas fluorescens
strain WCS365. Furthermore, it appeared to colonize
the same sites on the root as did the phytopathogenic
fungus. Under greenhouse conditions in potting
soil, C. fungivorans performed as well in biocontrol
of TFRR as the well-established biocontrol strains
P. fluorescens WCS365 and Pseudomonas chlorora-
phis PCL1391. Moreover, under biocontrol condi-
tions, C. fungivorans did not attach to Forl hyphae
colonizing plant roots. Based on these observations,
we hypothesize that C. fungivorans mainly controls
TFRR through a mechanism of competition for nutri-
ents and niches rather than through its reported
mycophagous properties, for which attachment of the
bacteria to the fungal hyphae is assumed to be
important.

Introduction

Soil bacteria from the genus Collimonas (De Boer et al.,
2004) have demonstrable chitinolytic and antifungal
activity. Originally retrieved from the top soil in between
tussocks of Ammophila arenaria (marram grass), Colli-
monas isolates produced clear haloes on water-agar
plates containing colloidal chitin (De Boer et al., 1998). In
addition, they inhibited the exploratory growth from
potato-dextrose agar plugs onto the surface of water-
agar plates of several fungi, including Chaetomium
globosum, Fusarium culmorum, Idriella bolleyi, Mucor
hiemalis, Phoma exigua and an Ulocladium species (De
Boer et al., 1998). Also included in this analysis was
Fusarium oxysporum, but its growth was not affected by
any of the Collimonas isolates tested (De Boer et al.,
1998). Another property of Collimonas bacteria is their
apparent ability to grow at the expense of living fungal
hyphae (De Boer et al., 2001). Dubbed ‘bacterial myco-
phagy’ (Fritsche et al., 2006), this property manifested
itself as an increase in the number of colony-forming
units of Collimonas bacteria after inoculation into micro-
cosms of sterilized purified sand that contained growing
hyphae of M. hiemalis or Chaetomium globosum (De
Boer et al., 2001). It is presently unknown what mecha-
nisms underlie the mycophagous phenotype of Collimo-
nas bacteria, but it has been suggested that attachment
to fungal hyphae and chitinolytic activity are contributing
factors. This is based on microscopic observations (De
Boer et al., 2001) and the negative effect of the chitinase
inhibitor allosamidin on the ability of Collimonas to grow
on fungal hyphae in purified sand microcosms (De Boer
et al., 2001).

Tomato foot and root rot (TFRR), a disease occurring
worldwide, causes serious economical losses in the
horticultural sector (Jarvis, 1988; Jones et al., 1991).
Hyphae of the phytopathogenic fungus Fusarium
oxysporum f.sp. radicis-lycopersici (Forl) attach to
tomato root hairs, colonize the root surface, and pen-
etrate the internal root parts where a highly branched
mycelium develops (Lagopodi et al., 2002). The infection
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process is accompanied by the development of lesions,
rotting of the root and eventually leads to plant death.
Chemical fungicides are not effective in suppressing
TFRR (Benhamou et al., 1994). Moreover, their use has
a negative connotation with media and policy makers.
As an alternative to chemicals, beneficial microbes can
be used for the biological control of soil-borne root dis-
eases. These can employ various mechanisms of action
such as production of antibiotic(s), volatiles and sidero-
phores (Tomashow and Weller, 1995; Lugtenberg and
Bloemberg, 2004; Haas and Defago, 2005), competition
for nutrients and niches (Lemanceau and Alabouvette,
1990; Kamilova et al., 2005; Validov et al., 2006), induc-
tion of systemic resistance in the plant by triggering pro-
tection mechanisms (Pieterse et al., 1996; Van Loon
et al., 1998; Kamilova et al., 2005), and predation and
parasitism (Harman et al., 2004; Bolwerk, 2005). The
best-known organism which uses predation and parasit-
ism as a major mechanism is the fungus Trichoderma
that produces extracellular cell wall-degrading enzymes
(Woo et al., 1999; Brunner et al., 2003) such as glucan
1,3-b-glucosidases, N-acetyl-b-glucosaminadases (Lorito
et al., 1994); chitobiosidases and endochitinases
(Harman et al., 1993). Also several strains of Serratia
plymuthica, S. marcescens and S. liquefaciens (Chet
et al., 1990; Stanley et al., 1994; Kalbe et al., 1996;
Kurze et al., 2001; Ovadis et al., 2004; Roberts et al.,
2005) with strong chitinolytic activity appear to be good
biocontrol agents. Given the ability of Collimonas to
produce chitinolytic enzymes, its antifungal activity and
mycophagous phenotype, we tested the potential of Col-
limonas as an adequate biocontrol agent of TFRR. For
this we used Collimonas fungivorans Ter331, a strain
that has been described in detail taxonomically (De Boer
et al., 2004).

Results and discussion

In vitro antagonistic tests

In routine in vitro antagonistic tests (Kamilova et al., 2005)
on solid potato dextrose (Difco Laboratories), Czapek-
Dox (Difco Laboratories), Waksman (Berg, 2000), and
King’s B (King et al., 1954) media or on water agar (De
Boer et al., 1998), C. fungivorans Ter331 did not inhibit
the growth of Forl. This is in line with previous results (De
Boer et al., 1998). In in vitro tests for the production of
proteases (Brown and Foster, 1970), lipase (Howe and
Ward, 1976), cellulase (Hankin and Anagnostakis, 1977)
and b-glucanase (Walsh et al., 1995), C. fungivorans
revealed activities only in the first two tests. The bacterium
did not produce the broad-spectrum antimicrobial com-
pound hydrogen cyanide in a test described by Castric
(1975).

Visualization of the in vitro interaction between
C. fungivorans and Forl

To visualize the interaction between Collimonas and Forl
at the microscopic level, C. fungivorans strain Ter331 was
transformed with plasmid pPROBE-NT-trp (Hallmann
et al., 2001) to constitutively express green fluorescent
protein and subsequently confronted with cfp-tagged Forl
(Bolwerk et al., 2005), on glass slides covered with a thin
layer of solidified medium. On Armstrong medium (Single-
ton et al., 1992) which contains 2% (w/v) glucose, fungal
mycelium and cells of Collimonas showed no obvious
interaction (Fig. 1A). When phosphate-buffered saline
(PBS) without carbon source was used, we observed
abundant colonization of developed fungal hyphae by
bacterial cells (Fig. 1B). On agar containing tomato root
exudate as the sole carbon source, prepared according to
Kamilova and colleagues (2005), colonization of hyphae
by bacteria was also observed, but to a lesser extent than
in PBS (Fig. 1C). Tomato root exudate contains various
organic acids and sugars (Lugtenberg et al., 2001;
Kamilova et al., 2006), but the total amount of carbon in
exudates is approximately 300 times lower than in Arm-
strong medium. Based on these observations, we hypoth-
esize that low nutrient availability stimulates Collimonas to
colonization fungal hyphae.

C. fungivorans is a good colonizer of tomato roots

Efficient competitive root colonization is important for the
success of bacteria in their action against soil-borne phy-
topathogenic fungi (Chin-A-Woeng et al., 2000; Kamilova
et al., 2005). Therefore we tested the competitive root
colonization ability of C. fungivorans. As a criterion for
good competitive root colonization, Simons and col-
leagues (1996) have developed an assay in which two
strains are coated in a 1:1 ratio on seeds. After 1 week of
seedling growth, the ratio of the two strains retrieved from
various parts of the root is determined and used as a
relative measure for competitive root colonization ability.
In a competitive tomato root colonization assay of
C. fungivorans Ter331 with Pseudomonas fluorescens
strain PCL1285, a kanamycin-resistant derivative of the
excellent tomato root colonizer P. fluorescens strain
WCS365 (Lugtenberg et al., 2001), the cell numbers of
Ter331 and PCL1285 on all parts of the root were statis-
tically indistinguishable, i.e. their ratio was close to 1
(Table 1). These data demonstrate that C. fungivorans
has excellent competitive tomato root-colonizing proper-
ties which in theory would allow it to deliver antifungal
compounds such as cell wall-degrading enzymes or anti-
biotics and/or compete with pathogens for nutrients and
niches on the plant root.

The ability of C. fungivorans to colonize the root as
efficiently as the highly rhizosphere-competent strain

1598 F. Kamilova, J. H. J. Leveau and B. Lugtenberg

© 2007 The Authors
Journal compilation © 2007 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 9, 1597–1603



P. fluorescens WCS365 is surprising because
C. fungivorans grows slower than WCS365 in vitro (data
not shown). Apparently, the tomato rhizosphere provides
the bacterium with conditions which allow it to compete
with WCS365.

Microscopic visualization of colonization of tomato root
by C. fungivorans under gnotobiotic conditions

Confocal laser scanning microscopy of tomato roots
grown from seeds coated with the gfp-tagged
C. fungivorans Ter331 revealed a pattern of root coloni-
zation in which the numbers of bacterial cells gradually
decreased from the foot to the root tip (results not shown).
A similar pattern of tomato root colonization was observed
earlier for P. fluorescens strain WCS365 (Dekkers et al.,
2000) and for Pseudomonas chlororaphis strain PCL1391
(Bolwerk et al., 2003). Microcolonies of Collimonas were
observed mostly in intracellular junctions (Fig. 2A and B)

A

B

C

Fig. 1. Visualization of the in vitro interaction between gfp-tagged
C. fungivorans and cfp-tagged Forl. Glass slides (25 ¥ 15 ¥ 1.5 mm)
were prepared by spreading 150 ml (A) 1.8% Armstrong agar
(glucose 20 g; KCl 1.6 g; KH2PO4 1.1 g; Ca(NO3)2 5.9 g;
MgSO4 ¥ 7H2O 400 mg; microelements 200 ml from each stock
solutions). Microelements stock solutions: FeCl3 167 mg/100 ml;
MnSO4 107 mg/100 ml; ZnSO4 178 mg/100 ml); (B) PBS agar, or
(C) agar containing tomato root exudate collected according to
Kamilova and colleagues (2005). Two-millimetre-diameter plugs of
Forl grown on Armstrong plates were placed on the agar layer of
the corresponding glass slides. Bacteria were overnight grown in
1/20 tryptic soy broth and washed twice in 0.9% NaCl. Bacteria
were spotted as a 10 ml drop (106 cells) at the distance of 1 cm
from the plug of Fusarium. Slides were incubated prior to
microscopy for 3 days at 28°C in Petri dishes lined with wet filter
paper and sealed with parafilm to prevent drying. Each treatment
consisted of five slides and the experiment was performed twice.

Table 1. Competitive tomato root tip colonization of C. fungivorans
and P. fluorescens PCL1285, kanamycin-resistant derivative of
P. fluorescens WCS365.

Competitive root colonizationa

Analysed root partb

Competing strains

PCL1285c C. fungivorans c

Foot 5.97 � 0.15 (a) 5.84 � 0.09 (a)
Middle part 5.67 � 0.70 (a) 5.07 � 0.43 (a)
Root tip 4.90 � 0.85 (a) 4.69 � 0.65 (a)

a. In every experiment, 10 plants were inoculated. When values from
the same experiment are followed by a different letter, they are
significantly different at the P = 0.05 level, according to the Wilcoxon
Mann–Whitney test.
b. Bacterial strains were inoculated according to Simons and col-
leagues (1996) on tomato seedlings cv Carmello in a 1:1 ratio. Plant
roots were isolated 7 days after inoculation. One-centimetre sections
from foot, middle part and root tip of each root were analysed for
bacterial population sizes.
c. Data are expressed as log10[(CFU + 1)/cm of root].
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as was observed earlier (Bolwerk et al., 2003) for the
biocontrol Pseudomonas strains mentioned previously.

Biocontrol of TFRR

In four independent experiments (for details, see legend
of Table 2), coating of tomato seeds (Chin-A-Woeng et al.,
1998) with cells of C. fungivorans led to significant bio-
control of TFRR (Table 2) in potting soil under greenhouse
conditions. This beneficial effect of C. fungivorans is com-
parable with that of the well-established biocontrol strains
P. fluorescens WCS365 and P. chlororaphis PCL1391
(Table 2). We have tested the ability of C. fungivorans to
induce systemic resistance in tomato plants against Forl
using a split root system as described by Kamilova and
colleagues (2005). Being spatially separated from the
disease-causing agent, C. fungivorans did not control
TFRR whereas the positive control P. fluorescens
WCS365 (Kamilova et al., 2005) did (data not shown),
which show that C. fungivorans and P. fluorescens
WCS365 differs in their mechanism of biocontrol of TFRR.

Under gnotobiotic biocontrol conditions in a quartz
sand/plant nutrient solution (Hoffland et al., 1989) system,

the density of fungal hyphae in each of 10 fields of view of
the root surface was always lower when bacteria were
present than when bacteria were not present (Fig. 2C).
Roots that showed clear disease symptoms were colo-
nized by bacteria to a much lesser extent than roots of
healthy looking plants (Fig. 2D). Surprisingly, we did
under no circumstances observe hyphal colonization by
Collimonas cells on plant root surfaces in contrast to
observations on the glass slides (Fig. 1B and C). We
cannot exclude the possibility that on the root the bacte-
rium attacks and lyses the hyphae much faster than in
vitro. If that were the case, one would have expected
intermediate stages of this process such as hyphae with
many attached bacteria and morphologically altered
hyphae. However, we did not observe these.

We conclude from our experiments that C. fungivorans is
a biocontrol strain acting efficiently against Forl under
greenhouse conditions. Our data on tomato split roots
allow us to rule out induction of systemic resistance
as a possible mechanism of TFRR biocontrol by
C. fungivorans. Strong competitiveness of Collimonas with
an excellent root colonizer P. fluorescens WCS365 and
ability to colonize the same sites on the tomato roots that

Fig. 2. Confocal laser scanning microscopical
analysis of tomato root colonization by
C. fungivorans Ter331 and phytopathogenic
fungus F. oxysporum f.sp. radicis-lycopersici
(Forl). Two-day-old tomato seedlings were
inoculated with cells of C. fungivorans
expressing the gfp gene, which here appear
as green cells. Plants were grown in
gnotobiotic sand system containing spores of
Forl harbouring a constitutively expressed cfp
gene (5 ¥ 103 spore per kg sand). Developed
hyphae here appear as blue. Tomato plants
were grown for 7 days in a plant-growth
chamber at 24°C, 70% humidity, and cycles of
16 h light/8 h dark. A total of 10 plants per
treatment were examined and the experiment
was repeated twice. At least 10 different fields
of view were observed per root.
Low-magnification represents the view of
colonization by C. fungivorans of a plant root
grown in untreated sand (A);
high-magnification represents a microcolony
of C. fungivorans (B). Colonization by
C. fungivorans and Forl of a root that showed
no macroscopically visible lesions and that
was scored as healthy (C). Colonization by
C. fungivorans and Forl of a root that showed
lesions and was scored as being sick (D).
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otherwise are occupied by Fusarium suggest competition
for nutrients and niches as a likely mechanism of biocon-
trol. Collimonas shows an in vitro chitinolytic activity similar
to that of biocontrol strain S. plymuthica (Berg, 1996). The
latter also showed in vitro antagonism against causal
pathogenic fungi Verticillium dahliae and V. longisporum
and was efficient in biocontrol of Verticillium wilt of oilseed
rape (Berg, 2000; Berg et al., 2000). Hence, C. fungi-
vorans makes an interesting case, where an in vitro obser-
vation (i.e. no antifungal activity towards Forl in vitro,
despite its in vitro chitinolytic activity) seems to be a false
predictor of its actually efficient biocontrol activity in vivo.
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